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Method of Moments Analysis
of Anisotropic Artificial Media
Composed of Dielectric Wire Objects

Matthew E. Peters, Member, IEEE, and Edward H. Newman, Fellow, IEEE

Abstract—The paper considers the periodic method of moments
(PMM) analysis of anisotropic artificial media composed of a 3-
D periodic array of identical scatterers. The method is based
upon finding the complex wavenumber(s), and the eigenfunction
currents and fields, for a plane wave propagating in the artificial
medium. From these quantities, the effective tensor constitutive
parameters are determined. It is shown that for a given direction
of propagation through an artificial medium, there are two
distinct modes of plane wave propagation, which may change with
the direction of propagation. Examples are shown for the case
where the periodic scatterers are thin dielectric wire structures.

I. INTRODUCTION

N ARTIFICIAL medium is basically a macroscopic
analog of a real medium [1, ch. 12], and typically consists
of a large number of scattering objects distributed (more or
less) uniformly in some host or background medium. For
simplicity of analysis, here the artificial medium is assumed
to be composed of a 3-D infinite periodic array of identical
scattering elements. When a plane wave propagates through
an artificial medium, currents are induced in (or on) the
scattering objects. These currents can be viewed as macro-
scopic current moments, analogous to the microscopic dipole
moments induced in the molecules of a real dielectric [2]. The
effect of the macroscopic current moments is to produce a
net electric and magnetic current moment per unit volume,
giving the artificial medium some complex effective tensor
permittivity and permeability different from that of the host
medium. The complex effective constitutive parameters of the
artificial medium are a function of frequency, the electrical
size, shape, spacing, and orientation of the scattering objects,
and the constitutive parameters of both the host medium and
the scattering objects. By properly choosing the geometry
and composition, it may be possible to design an artificial
medium of desired permittivity, permeability and loss tangent.
This paper reviews the periodic method of moments (PMM)
analysis of artificial media, and presents examples for 3-D
periodic structures of material wire scatterers. The reader is
referred to the authors previous work [3], [4] and to Collin’s
book [1] for a bibliography on artificial media.
The PMM analysis of artificial media proceeds as follows.
First, a homogeneous integral equation is formulated for a
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Fig. 1. Geometry of the general artificial dielectric.

plane wave of unknown wavenumber propagating in a periodic
artificial medium of infinite extent in all three dimensions.
Next, this integral equation is solved by the PMM, yiclding
the complex effective wavenumbers of the plane wave, the
eigenfunction currents in the wire objects, and the eigenfunc-
tion fields in the artificial medium. From these quantities, the
effective constitutive parameters of the artificial medium are
determined. The principle advantage of the PMM solution is
that it is a full wave solution and accounts for how mutual
coupling can effect the shape of the currents on the scatterers
in the periodic array. This change in the shape of the current
can be extremely important, especially for very closely spaced
elements [3], [4, Figs. 11 and 12].

II. THEORY

As shown in Fig. 1, the geometry of the artificial medium
consists of a 3-D triple infinite periodic array of dielectric
wire objects located in a homogeneous and isotropic host
medium. The homogeneous host medium has constitutive
parameters (uo, €g), wavelength Xg, wavenumber kg, and is
not necessarily free space and may be lossy. The thin wire
objects [6] may be composed of an arbitrary conductive or
dielectric material, and are arranged in a rectangular lattice
cell structure with spacings d1,d2, and ds in the %, 4, and 2
directions, respectively. The reference or center cell is centered
at the origin. All fields and currents are time harmonic with
the €?“! time dependence suppressed.

As has been previously published by the authors [3]-[5],
the periodic moment method (PMM) is used to determine
the wavenumber(s) for a plane wave propagating in a given
direction (without excitation) in the artificial medium. The
plane wave fields have spatial variation of the form
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where k., = k.4 is the unknown vector wavenumber of the
plane wave propagating in the known 4 direction, and 7 is the
position vector. Assuming that the current on the scatterers is
expanded in terms of N basis functions, the PMM solution
results in a homogeneous matrix equation of the form

[Z(k)I =0 )

where [Z(k.)] is the order N impedance matrix, and I is
the length N current vector which contains the N unknown
coefficients in the expansion for the current on the center or
reference element. Equation (2) has a non-trivial solution only
if the determinant of the impedance matrix is zero. Thus, k.
is found by an iterative solution of the fundamental equation

1Z(k.)| = 0. 3)

Generally, there are two distinct roots to (3); however, in
certain special cases one root is a free space root (k. = ko),
while in other cases the two roots are identical due to array
symmetry. Associated with each root there is a polarization
4 and eigenfunction currents and fields. From these values,
the effective permeability and permittivity (%,,€.) can be
determined.

A. Evaluation of the Effective Constitutive Parameters

This section presents a new method, termed Maxwell’s
Equations method [4], for determining the dyadic effective
permittivity and permeability (€., 7z, ) of an anisotropic artifi-
cial medium. Also, two methods previously published by the
authors [3]-[3] are briefly summarized. It is assumed that for
a given geometry, the two roots k. of (3), their corresponding
eigenfunction currents J® on the center element, and their
eigenfunction fields averaged over the volume of the center
cell (EO,H 0), have all been determined.

1) Maxwell’s Equations Method: Maxwell’s Equations
method determines the effective tensor constitutive parameters
of the artificial medium such that the eigenfunction fields
averaged over the center cell, (EO,H 0). satisfy Maxwell’s
source free equations [4]. For a plane wave of the form of
(1), Maxwell’s differential equations reduce to the algebraic
equations [7, section 2.3]

VxH=—jwD=k.xH®=—-wD°

= —we. - E° 4
VxE =jwB =k, x E°=wB’
=wp, - H°. (5)

Equation (4) can be explicitly shown as the order 3 matrix
equation

. 0 0 e e e 0
keyH, — ke H)) €rr  Coy Can | | P2
ke;HS — kemHg = —w |6, ezy €5z E:g (6)
. 0 . (1] e e e 0
kexHy — keyH) €5, €y €on | | £

relating the nine components of the permittivity dyad to the
average electric and magnetic fields in the center cell. Equation
(6) is equivalent to three equations in the nine components of
€., and is the result of one of the two roots of (3). The other
root will produce a dyadic equation, similar to (6) with the
same €., but with different k. and (E°, H®). The two dyadic
equations, along with the condition that €, is symmetric, can
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now be used to solve for the nine components of €,. The
determination of 7z, is parallel to that presented for €., but
uses the dyadic (5).

2) Polarization Method: The polarization method [3], [4]
enforces the constitutive relationships in an average sense
over the center cell. Denoting P® and M’ 9 a5 the electric and
magnetic dipole moment per unit volume averaged over the
center cell, the constitutive relationships become

D —¢E°+PY =% - E° ()
B® =po(H° + M®) =73, - H° 8)

and are used in place of (4) and (5).

3) Simple Uniaxial Formula: Uniaxial media are charac-
terized by diagonal z, and €.. When propagation is along
a given principle axis, the two roots of (3) correspond to
the polarization in the directions of the two principle axes
transverse to the direction of propagation. For a given root
ke one can compute the average fields (EO,HO) and then
the corresponding wave impedance 7. as the ratio of the
tangential electric to magnetic fields. The parameters . and
€. are related to k. and 7. through the relations

ke = w\/lic€e and 7. = ,/&. )
€e

If the artificial medium is non magnetic, then p. = po and
€e = k?/w? o avoiding the necessity to compute 7.

III. NUMERICAL RESULTS

A. PEC Dipoles

For a real anisotropic dielectric, the propagation wavenum-
ber, but not the nine elements of the permittivity tensor, is
dependent on the direction of propagation [8, ch. 4], [9, ch.
14]. The first set of data will illustrate that this typically
also holds reasonably well for artificial dielectrics. As shown
in the insert to Fig. 2, the geometry consists of a 3-D
array of perfect electric conducting (PEC) dipoles of radius
a = 0.001)¢ and length 2h = 0.2, located in free space.
They are arranged in a fixed lattice with di = 0.25)¢ and
ds = d3 = 0.05). The artificial dielectric is uniaxial, and €’
is the only non—unity diagonal permittivity tensor component.
The direction of propagation 4 varies with the angle § = 0
corresponding to broadside, and 90° corresponding to end
fire to the dipoles. As a function of the propagation angle
8, the solid line in the bottom figure shows the values of
k./ko obtained from (3) for the root associated with the Z-
directed current. The second root is k. = kg and is for the
4 polarization. The top figure shows the relative effective
permittivity €77 computed by both the polarization method
and the Maxwell’s equations method. Note that ¢, ~2.4
independent of the angle ¢, while k./ko varies from about
1.54 at broadside to 1 at endfire. In real anisotropic media, the
wavenumber for propagation angle  can be evaluated via the
ellipsoid of wave normals [8. ch. 4], [9, ch. 14]. The result of
this method as applied to the 3-D array of dipoles is that for
propagation angle 6

1 +tan?6
kol0) = kkyy | ——5—
(6) =k YAl 'k2 + k2 tan? ¢

(10)
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Fig. 2. The normalized effective wavenumber (k/ko) and the relative
effective permittivity versus propagation angle €, for an array of perfectly
conducting short dipoles.

where k; & 1.54kg (at 0 = 0) and k, = ko (at 6 = 90°). k.(9)
computed by (10) is shown by the dashed line in the bottom
of Fig. 2, and i3 seen to be in very close agreement with k,
computed by the PMM from (3).

B. PEC Wire Crosses

The second set of data is for a PEC wire cross, since
it is one of the simplest geometries with two distinct roots
(different from k. = kg). As shown in the insert to Fig.
3, the wire crosses of radius ¢ = 1 mm have a vertical
member of length L = 5 cm and a horizontal member of
length L/2 = 2.5 cm located L/4 = 1.25 cm from the top of
the vertical member. The wire crosses are arranged in a 3-D
lattice with d; = 3.75 cm, do = 7.5 cm, and d3 = 1 cm, and
the direction of propagation is along the z-axis. This artificial
d1e1ectr1c is uniaxial with nonunity values for both €7 and

. The solid lines in Fig. 3 show dispersion curves for €5,
and €5y for the wire cross, while the dashed lines are for the
isolated vertical or horizontal members of the cross. Note that
a vertical or ¢ polarized wave will directly induce currents
on the vertical member of the cross, and then through mutual
coupling currents will be induced on the horizontal member of
the cross. For this reason Fig. 3 shows different values of €Z,
for the cross as compared to the isolated vertical dipole. By
contrast, a horizontal or # polarized wave will directly induce
currents on the horizontal member of the cross. However, since
the vertical member is symmetrically located with respect to
the horizontal member, the horizontal currents will not induce
currents in the vertical member. For this reason, Fig. 3 shows
the same values of €7, for the cross as compared to the
isolated horizontal dipole. This effect can also be observed
in Fig. 4, which shows the magnitude of the determinant of
the impedance matrix |Z (k)| versus the normalized effective
wavenumber k./kg for the array of PEC wire crosses (top
figure), as well as for the arrays of isolated vertical (middle
figure) and horizontal (bottom figure) dipoles, at the frequency
of 2 GHz. The wire cross has two roots at k./ke ~ 1.08
and 1.58, corresponding to horizontal and vertical polarization,
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Fig. 3. Dispersion curve for a 3-D array of PEC wire crosses and for isolated
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30¢ T T T T
Ey Wire Crosses
29 ¢
28
27
26
20
E 19
E 18
17
[=]
&' 16
<
= 15
9
8¢
7L
6 1 i 1 |
1.0 1.2 1.4 1.6 1.8 2.0

ke/kg

Fig. 4. Magnitude of |Z| versus normalized effective wavenumber for an
array of PEC wire crosses, and for the isolated vertical and horizontal dipole
members.

respectively. By contrast the isolated vertical and horizontal
dipoles show only one root (the other is a free space root
ke = ko).

C. Bent PEC Wires

The next set of data will illustrate a simple bent wire element
geometry which results in nonzero off-diagonal elements in the
effective permittivity tensor. As shown in the insert to Fig. 5,
the geometry consists of a bent PEC wire of total length 3L =
30 cm and radius ¢ = 1 mm. The bent wires are arranged
in a 3-D lattice with spacings d; = 12.5 cm, dy = 22.5
cm, and d3 = 2.5 cm. An & polarized electric field incident
upon the bent wire will induce £ directed currents on the
horizontal section and ¢ directed currents on the two vertical
sections. These currents will radiate both # and 4 polarized
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Fig. 6. The two current modes for a bent PEC wire geometry.

electric fields, thus producing a nonunity €27, and a nonzero
€5y~ For propagation in the &4 = 2 direction, the top curve
in Fig. 5 shows the normalized effective wavenumber k. /ko
versus frequency for the two distinct nonfree space roots. The
frequency is swept from 100-500 MHz, corresponding to total
wire lengths of 0.1\¢ < 3L < 0.5Xg. Note that the Root |
effective wavenumber is nearly constant across the frequency
range, whereas the Root 2 effective wavenumber increases
rapidly as the total wire length approaches 31 = 0.5\q. Fig.
6 shows the two current modes induced on the bent wire at a
frequency of 300 MHz. The Root 1 current mode is essentially
+ and —y directed, whereas the Root 2 current mode is +&
and +¢ directed, similar to the current mode on a straight
dipole. The electromagnetic fields of these two modes will be
plane waves propagating through the artificial media in the
same direction, but with orthogonal polarizations. The bottom
curve in Fig. 5 shows the (nonzero and nonunity) relative
effective permittivity tensor components versus frequency. The
results computed by the Maxwell’s Equations method and the
polarization method are identical. Also, the numerical results
showed that e‘” and €77 are nearly identical, thus illustrating

Yy
a similarity between real and artificial media [9, ch. 14.1].

D. Lossy Dielectric Dipoles

The next set of data will illustrate the design of a lossy
array of dipoles to maximize the loss of the artificial medium.
As shown in the insert to Fig. 7, at f = 300 MHz ()¢ = 1
m), the geometry consists of lossy dielectric dipoles of length
2h = 0.2)¢ and radius ¢ = 0.001)g, arranged in a 3-D

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO. 9, SEPTEMBER 1995

4.5 T
4.0 P
3.5~Ep |HHIO zxo/ ]
] [ SR
wo2.5¢ / a=0.0012y ]
2.0F i/ a=0.23h,
1.5F 7 dp=d;3=0.03n, 4
1.0 i x
0.8 o
P0.6- // \\ 3
"Qﬁ // \
g 0.4 F ) \ E
Yozt v \\ E
0.0 ‘ ]
10 100 1000 10K 100K

tan ¢, = Dipole Loss Tangent

Fig. 7. Relative effective permittivity and loss tangent for a 3-D array of
lossy dielectric dipoles.

lattice with spacings d; = 0.23Xg and do = d3 = 0.03X.
Propagation is in the & = 2z direction, and polarization is in
the # direction. The dipoles have relative dielectric constant
€1 = 1, and the problem is to choose the dipole loss tangent,
tan 61, to maximize the effective loss tangent of the artificial
medium. Fig. 7 shows the relative effective permittivity €7
and effective loss tangent tan6¢, of the artificial medium
versus dipole loss tangent for 10 < tané; < 100, 000. Note
that as the dipole loss tangent increases, the artificial dielectric
effective loss tangent initially also increases, and reaches a
maximum of tanéS, = 0.75 for a dipole loss tangent of
tané; =~ 600.

E. Dielectric Weave

The data in this section show the dispersion characteristics
of the effective permittivity of a dielectric weave, a geometry
which has current that flows between adjacent lattice cells. As
shown in the insert to Fig. 8, the geometry consists of stacked
or layered square grids of dielectric rods. The dielectric rods
have relative permittivity €1,, = 10 and radius ¢ = 2 mm.
The grid dimensions are d; = da = L = 5 cm, and are
spaced a distance of d3 = 6 mm apart. Curves are shown
for lossless dielectric rods, and also for lossy rods of loss
tangent tand; = 1. Propagation is along the z-axis, and
due to symmetry considerations, the medium is uniaxial with
€ = €y and €27 = 1. Fig. 8 shows the relative effective
permittivity €7, = €, and effective loss tangent tand;, =
tan 6; of the artificial medium for frequency varying up
to 3 GHz (corresponding to a grid size of L = 0.5)g) for
dielectric rod loss tangent values of tané; = 0 and 1. Note
that the relative effective permittivity and effective loss tangent
are almost constant across the given frequency range, due to
essentially constant current in the dielectric rods.

F.  Graphite—Epoxy 2-D Composite Medium

This section considers a modern composite material con-
sisting of very thin graphite fibers embedded in an epoxy host
binding material. The graphite fibers are modeled as material
wires of infinite length in the x direction with radius a =
3.2 um, spaced in a square 2-D lattice with ds = d3 = 7.5 pm.
The conductivity of the graphite fibers is 71.4 KU/meter and



PETERS AND NEWMAN: ANALYSIS OF ANISOTROPIC ARTIFICIAL MEDIA

2.0 T g T 1
1.8F B
55 160 tariﬁ;
0]
58 1.4F. - B
5 —%\
1.2¢ tand,; =1 E
1‘0 t L i3 L
1.0~ T IY T T T
. 2 =1 dy=dy=L=5cm
gt t 1=ds E
b; o8 ] bt el dy=6mm €1, =10
S o.6f % e=2mm &=% ]
0]
o¥ 0.4: i /
& T s
= 2 tano; =1
= 0.2: tand,;=0— 179
0- I L L \ ! L
0 0.5 1.0 1.5 2.0 2.5 3.0

Frequency (GHz)

Fig. 8. Dispersion curves for a dielectric weave geometry with lossy and
lossless wires.
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Fig. 9. Dispersion curves for a composite graphite-epoxy material.

the permittivity of the host epoxy material is €y, = 2.5.
Fig. 9 shows the computed dispersion characteristics of the
composite material. Note that at low frequencies, the effective
conductivity is very close to what results from using a simple
fill factor formula based on a ratio of the area occupied by
the graphite fibers to the area occupied by a 2-D lattice cell.
That is, for low frequencies, the effective conductivity is
approximately given by

2

e Afiber _ Ta
~ Ofiber =

7o ™ e dyd.°
Applymg (11) to the graphite-epoxy composite medium re-
sults in o7, = 40.8 KU/meter, agreeing very closely with the
low frequency results of Fig. 9.

an

IV. SUMMARY

This paper has considered the PMM analysis of an artificial
medium. In general for an anisotropic artificial mediom there
are plane waves with two distinct roots or wavenumbers, k.,
that can propagation in a given direction. However, in certain
special cases one root is a free space root k. = kg, while in
other cases the roots are equal due to problem symmetry. In
a real or an artificial anisotropic medium, as the direction of
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propagation changes, the propagation wavenumber is typically
a strong function of angle. By contrast, for a real medium the
elements of the tensor constitutive parameters are independent
of angle, and for an artificial medium they are (typically)
almost independent of angle.
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